Low Resourced Machine Translation via Morpho-syntactic Modeling: The Case of Dialectal Arabic
نویسندگان
چکیده
We present the second ever evaluated Arabic dialect-to-dialect machine translation effort, and the first to leverage external resources beyond a small parallel corpus. The subject has not previously received serious attention due to lack of naturally occurring parallel data; yet its importance is evidenced by dialectal Arabic’s wide usage and breadth of inter-dialect variation, comparable to that of Romance languages. Our results suggest that modeling morphology and syntax significantly improves dialect-to-dialect translation, though optimizing such data-sparse models requires consideration of the linguistic differences between dialects and the nature of available data and resources. On a single-reference blind test set where untranslated input scores 6.5 BLEU and a model trained only on parallel data reaches 14.6, pivot techniques and morphosyntactic modeling significantly improve performance to 17.5.
منابع مشابه
Context-dependent type-level models for unsupervised morpho-syntactic induction
This thesis improves unsupervised methods for part-of-speech (POS) induction and morphological word segmentation by modeling linguistic phenomena previously not used. For both tasks, we realize these linguistic intuitions with Bayesian generative models that first create a latent lexicon before generating unannotated tokens in the input corpus. Our POS induction model explicitly incorporates pr...
متن کاملIntegrating morpho-syntactic features in English-Arabic statistical machine translation
This paper presents a hybrid approach to the enhancement of English to Arabic statistical machine translation quality. Machine Translation has been defined as the process that utilizes computer software to translate text from one natural language to another. Arabic, as a morphologically rich language, is a highly flexional language, in that the same root can lead to various forms according to i...
متن کاملJoint Morphological-Lexical Language Modeling for Machine Translation
We present a joint morphological-lexical language model (JMLLM) for use in statistical machine translation (SMT) of language pairs where one or both of the languages are morphologically rich. The proposed JMLLM takes advantage of the rich morphology to reduce the Out-Of-Vocabulary (OOV) rate, while keeping the predictive power of the whole words. It also allows incorporation of additional avail...
متن کاملStatistical Machine Translation of Parliamentary Proceedings Using Morpho-Syntactic Knowledge
This paper presents an overview of the University of Washington statistical machine translation system developed for the 2006 TCSTAR evaluation campaign. We use a statistical phrase-based system with multiple decoding passes and a log-linear probability model. Our main focus was on exploring the possibility of using morpho-syntactic knowledge (lemmas and part-of-speech tags) for word alignment,...
متن کاملDialectal to Standard Arabic Paraphrasing to Improve Arabic-English Statistical Machine Translation
This paper is about improving the quality of Arabic-English statistical machine translation (SMT) on dialectal Arabic text using morphological knowledge. We present a light-weight rule-based approach to producing Modern Standard Arabic (MSA) paraphrases of dialectal Arabic out-of-vocabulary (OOV) words and low frequency words. Our approach extends an existing MSA analyzer with a small number of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1712.06273 شماره
صفحات -
تاریخ انتشار 2017